Power Management Device Latencies Measurement

From OMAPpedia

Revision as of 16:08, 11 November 2010 by Jpihet (Talk | contribs)
Jump to: navigation, search

Contents

PM Devices constraintes measurements

Introduction

To correctly implement the device latency constraint support it is needed to get accurate measurements of the system low power modes overhead:

This wiki page details the measurements setup and the results. The latency data is to be fed into the constraints latency patches.

Kernel patches & build

Some kernel changes are required for the kernel instrumentation. The patches and config are attached to this page

a5a24bc82d3f98758f8fdd0cb0af71012b735477 OMAP-cpuidle-workaround

Changes: DSS for Beagle, Initramfs Busybox root FS

HW traces details

The trace points are connected on Beagleboard rev B7.

!Warning! The HW power supplies and external clocks are not cut off in this config (no support for System OFF in l-o), so the HW latencies are lower than expected. The HW measurements need to be performed as soon as l-o supports the System OFF. The measurements from TI are used for the real HW latency.

Here are some scope screenshots showing the time delta between the wake-up event (USER button press, trace A) and the end of omap_sram_idle (USR1 Led).

For RET mode, showing a delta of 408us:

Scope capture ret.jpg

For OFF mode, showing a delta of 2700us:

Scope capture off.jpg

GPT tracer

Since GPT12 is used as a wake-up source from the idle mode, it can be used to track the timings during the wake-up sequence. A patch is needed to let the timer count after it overflowed and woke up the system.

The GPT runs on 32KHz clock and so the resolution is limited to 30.518us. Given the latencies to measure for OFF mode, the resolution is accpetable.

4 GPT measurements are performed during the wake-up:

SW trace usage

Enable the power events and dump the trace:

# echo 1 > /debug/tracing/events/power/enable
# cat /debug/tracing/trace_pipe &

Enable the system idle in RET mode:

# echo 5 > /sys/devices/platform/omap/omap-hsuart.0/sleep_timeout 
# echo 5 > /sys/devices/platform/omap/omap-hsuart.1/sleep_timeout 
# echo 5 > /sys/devices/platform/omap/omap-hsuart.2/sleep_timeout 

# echo 0 > /debug/pm_debug/enable_off_mode
# echo 1 > /debug/pm_debug/sleep_while_idle

Trace output:

[   62.311462] *** GPT12 wake-up (HW wake-up, ASM restore, delta trace1-7): 183, 0, 244 us       => Dump of GPT timing deltas
          <idle>-0     [000]    62.241608: power_start: type=1 state=1 cpu_id=0                  => Idle start
          <idle>-0     [000]    62.241608: power_start: type=4 state=1 cpu_id=0                  => First suspend SW trace in omap_sram_idle
          <idle>-0     [000]    62.241638: power_start: type=4 state=2 cpu_id=0                  => ...
          <idle>-0     [000]    62.241669: power_start: type=4 state=3 cpu_id=0
          <idle>-0     [000]    62.241699: power_domain_target: name=neon_pwrdm state=1 cpu_id=0
          <idle>-0     [000]    62.241699: power_start: type=4 state=4 cpu_id=0
          <idle>-0     [000]    62.241699: clock_disable: name=uart3_fck state=0 cpu_id=0
          <idle>-0     [000]    62.241730: power_start: type=4 state=5 cpu_id=0
          <idle>-0     [000]    62.241730: clock_disable: name=uart1_fck state=0 cpu_id=0
          <idle>-0     [000]    62.241730: clock_disable: name=uart2_fck state=0 cpu_id=0
          <idle>-0     [000]    62.241760: power_start: type=4 state=6 cpu_id=0
          <idle>-0     [000]    62.241760: power_start: type=4 state=7 cpu_id=0
          <idle>-0     [000]    62.241760: power_start: type=4 state=8 cpu_id=0                  => Last suspend SW trace in omap_sram_idle
          <idle>-0     [000]    62.311188: power_start: type=5 state=1 cpu_id=0                  => First resume SW trace in omap_sram_idle
          <idle>-0     [000]    62.311188: power_start: type=5 state=2 cpu_id=0                  => ...
          <idle>-0     [000]    62.311188: power_start: type=5 state=3 cpu_id=0
          <idle>-0     [000]    62.311188: power_start: type=5 state=4 cpu_id=0
          <idle>-0     [000]    62.311218: clock_enable: name=uart1_fck state=1 cpu_id=0
          <idle>-0     [000]    62.311310: clock_enable: name=uart2_fck state=1 cpu_id=0
          <idle>-0     [000]    62.311310: power_start: type=5 state=5 cpu_id=0
          <idle>-0     [000]    62.311340: clock_enable: name=uart3_fck state=1 cpu_id=0
          <idle>-0     [000]    62.311340: power_start: type=5 state=6 cpu_id=0
          <idle>-0     [000]    62.311432: power_start: type=5 state=7 cpu_id=0                  => Last resume SW trace in omap_sram_idle
          <idle>-0     [000]    62.319885: power_end: cpu_id=0                                   => Idle end

Enable the system idle in OFF mode:

# echo 5 > /sys/devices/platform/omap/omap-hsuart.0/sleep_timeout 
# echo 5 > /sys/devices/platform/omap/omap-hsuart.1/sleep_timeout 
# echo 5 > /sys/devices/platform/omap/omap-hsuart.2/sleep_timeout 

# echo 1 > /debug/pm_debug/enable_off_mode
# echo 1 > /debug/pm_debug/sleep_while_idle

Trace output:

/ # echo 1 > /debug/pm_debug/enable_off_mode
/ #           
              sh-503   [000]    70.862366: power_domain_target: name=iva2_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862396: power_domain_target: name=mpu_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862396: power_domain_target: name=neon_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862396: power_domain_target: name=core_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862427: power_domain_target: name=cam_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862457: power_domain_target: name=dss_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862488: power_domain_target: name=per_pwrdm state=0 cpu_id=0
              sh-503   [000]    70.862488: power_domain_target: name=usbhost_pwrdm state=0 cpu_id=0
/ # 
[  557.240020] *** GPT12 wake-up (HW wake-up, ASM restore, delta trace1-7): 1495, 915, 488 us    => Dump of GPT timing deltas
          <idle>-0     [000]   557.156769: power_start: type=1 state=1 cpu_id=0                  => Idle start
          <idle>-0     [000]   557.156769: power_start: type=4 state=1 cpu_id=0                  => First suspend SW trace in omap_sram_idle
          <idle>-0     [000]   557.156769: power_start: type=4 state=2 cpu_id=0                  => ...
          <idle>-0     [000]   557.156830: power_start: type=4 state=3 cpu_id=0
          <idle>-0     [000]   557.156830: power_domain_target: name=neon_pwrdm state=0 cpu_id=0
          <idle>-0     [000]   557.156830: power_start: type=4 state=4 cpu_id=0
          <idle>-0     [000]   557.156860: clock_disable: name=uart3_fck state=0 cpu_id=0
          <idle>-0     [000]   557.156891: power_start: type=4 state=5 cpu_id=0
          <idle>-0     [000]   557.156891: clock_disable: name=uart1_fck state=0 cpu_id=0
          <idle>-0     [000]   557.156921: clock_disable: name=uart2_fck state=0 cpu_id=0
          <idle>-0     [000]   557.157013: power_start: type=4 state=6 cpu_id=0
          <idle>-0     [000]   557.157013: power_start: type=4 state=7 cpu_id=0
          <idle>-0     [000]   557.157898: power_start: type=4 state=8 cpu_id=0                  => Last suspend SW trace in omap_sram_idle
          <idle>-0     [000]   557.236084: power_start: type=5 state=1 cpu_id=0                  => First resume SW trace in omap_sram_idle
          <idle>-0     [000]   557.236145: power_start: type=5 state=2 cpu_id=0                  => ...
          <idle>-0     [000]   557.236206: power_start: type=5 state=3 cpu_id=0
          <idle>-0     [000]   557.236267: power_start: type=5 state=4 cpu_id=0
          <idle>-0     [000]   557.236389: clock_enable: name=uart1_fck state=1 cpu_id=0
          <idle>-0     [000]   557.236450: clock_enable: name=uart2_fck state=1 cpu_id=0
          <idle>-0     [000]   557.236450: power_start: type=5 state=5 cpu_id=0
          <idle>-0     [000]   557.236481: clock_enable: name=uart3_fck state=1 cpu_id=0
          <idle>-0     [000]   557.236511: power_start: type=5 state=6 cpu_id=0
          <idle>-0     [000]   557.236572: power_start: type=5 state=7 cpu_id=0                  => Last resume SW trace in omap_sram_idle
          <idle>-0     [000]   557.248718: power_end: cpu_id=0                                   => Idle end

Timings results

Results interpretation

The low power transition sequence is pictured as nested calls to functions:

Low power transition sequence.png

The measured results (from the HW and SW traces) are mapped to the pictured states according to the following table:

Pictured state Trace point Performed SW action
Idle enter start suspend System ready to enter idle
omap_sram_idle 1 suspend trace point 1 Enter omap_sram_idle
omap_sram_idle 2 suspend trace point 2 calculation of next power domains modes
omap_sram_idle 3 suspend trace point 3 Power domains pre-transition: program power domains current state, clear status
omap_sram_idle 4 suspend trace point 4 Context save for NEON; IO pad and chain new state programmed
omap_sram_idle 5 suspend trace point 5 Context save for PER, GPIO; prepare UARTs 2&3
omap_sram_idle 6 suspend trace point 6 Context save for CORE and PRCM; prepare UARTs 0&1
omap_sram_idle 7 suspend trace point 7 Context save for INTC; program SDRC
WFI enter suspend trace point 8 GPIO HW trace; MPU context save in ASM (caches, registers, disable cache & prediction)
System OFF active - sys_off_mode, external clocks and power supplies to be measured with System OFF support -
Wake-up event: IO or GPT12 HW trace A, GPT12=0 (if GPT wake-up) -
System OFF inactive - sys_off_mode, external clocks and power supplies to be measured with System OFF support -
WFI exit - GPT12 sampling right after WFI
omap_sram_idle 1 GPT12 sampling at return from ASM code; wake-up trace point 1 SDRC errata for ES3.1; MPU context restore, MMU restore and enable
omap_sram_idle 2 wake-up trace point 2 cpu_init
omap_sram_idle 3 wake-up trace point 3 SDRC settings restore
omap_sram_idle 4 wake-up trace point 4 Restore MMU tables, enable caches and prediction
omap_sram_idle 5 wake-up trace point 5 Context restore for CORE, PRCM, SRAM, SMS; resume UARTs 0&1
omap_sram_idle 6 wake-up trace point 6 Context restore for PER, INTC, GPIO, IO pad & chain; resume UARTS 2&3
omap_sram_idle 7 wake-up trace point 7, GPT sampling, HW trace B Power domains post-transition: program power domains current state, clear status; restore SDRC settings
Idle exit

Backup data

Some timings measurements have been made at chip characterization. The following table gives the results:

Characterization measurement Full RET (us) Full OFF (us) Remark
HW sleep latency: from WFI enter till sys_off_mode active 154 - Not measured in OFF mode, to be done once System OFF support is in l-o
HW total sleep latency: from WFI enter till System OFF (voltages and external clocks cut off) 494 3784
HW wake-up latency: from sys_off_mode inactive till WFI exit 245 - Not measured in OFF mode. The MPU context restore code is considered as part of the HW restore
HW total wake-up latency: from wake-up event till WFI exit 8479* 8749* OK for RET since no MPU restore code is needed. OFF mode: it is assumed this contains the MPU context restore code

*: The value of PRM_CLKSETUP (and VOLTSETUP possibly) need some optimization. A value of 0xFF for CLKSETUP means a clock stabilization time of 8ms while it is recommended to use 5.25ms.

Full RET mode

Full OFF mode

Timings results

Device constraint code patches, derived from the timings results.

Attachments

Kernel patches and config

File:OMAP latency measurements patches and config.tar.gz

--Jpihet 14:21, 5 November 2010 (UTC)

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox