L27.IS.2.M1 OMAP4 Icecream Sandwich Release Notes

From OMAPpedia

(Difference between revisions)
Jump to: navigation, search
(Flashing the OMAP4 Hardware)
(Downloading Release Software)
Line 98: Line 98:
mkdir kernel
git clone git://git.omapzoom.org/kernel/omap.git kernel/android-3.0
git clone git://git.omapzoom.org/kernel/omap.git kernel/android-3.0
cd kernel/android-3.0
cd kernel/android-3.0

Revision as of 16:05, 12 March 2012



This software release has been developed and verified in the following software and hardware environment.
This release is a maintenance release from the previous Beta release L27.IS.2-P1 or P2 and this release is based of the ics-mr1-release branch.

OS Kernel: Linux® 3.0
Android: Android IcecreamSandwich 4.0.3 MR1
Toolchain: CodeSourcery compiler version Sourcery G++ Lite 2010q1-202 for ARM GNU/Linux
Reference hardware platforms: TI OMAP4 4460 ES1.1 HS blaze_tablet and also TI OMAP4 4460 ES1.1 HS blaze
Build Host OS: Ubuntu
Daily Build Blaze_Tablet Version: IceCream_Blaze_Tablet_DailyBuild_398
Daily Build Blaze Version: IceCream_Blaze_DailyBuild_404

Tools & Dependency packages

Pre-requisite packages for building the Android Filesystem (Note this is with reference to Ubuntu 10.04 64-bit). Ubuntu 64-bit is required by Ice Cream Sandwich.

If you are behind firewall, you will have to set-up firewall using the instructions in [1]

The following commands will install the correct packages to your server:

sudo apt-get install git-core flex bison gperf libesd0-dev zip libwxgtk2.6-dev zlib1g-dev build-essential tofrodos x-dev 
sudo apt-get install lib32readline5-dev libstdc++6 lib32z1 lib32z1-dev ia32-libs g++-multilib libx11-dev libncurses5-dev 

Add the partner repositories and install the JDK:

sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"
sudo apt-get update
sudo apt-get install sun-java6-jdk

Install latest repo tool:

mkdir ~/bin -p
sudo apt-get install curl
curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
chmod a+x ~/bin/repo
export PATH=~/bin:$PATH

Command to get repo version:

repo --version
Should be repo version v1.7.8.2 or higer.

If you do not have sudo rights to your machine, contact your System Administrator for assistance.

Tool Chain for building Kernel and Drivers

The Kernel and Driver sources are built using Sourcery G++ Lite 2010q1-202 for ARM GNU/Linux version.

This tool chain can be obtained from


Downloading Release Software

Android Filesystem Sources


1: You should export a variable "https_proxy" when behind a firewall, since file system build downloads repo tree from Google server over https connection. You can use the format mentioned


export https_proxy=<local_site_proxy_server eg: http://local.proxyserver.com:80>

2: Ensure that you back up .repo folder into another location, otherwise it will take precedence on top of the one you will be creating below. Command below for reference

mv $HOME/.repo $HOME/.repo_old

You can get the Android source for this release by doing:

cd <your work directory>
mkdir -p 27.IS.2.M1; cd 27.IS.2.M1
export YOUR_PATH=`pwd`
mkdir -p mydroid; cd mydroid
export MYDROID=`pwd`
repo init -u git://git.omapzoom.org/platform/omapmanifest.git -b 27.x -m RLS27.IS.2.M1_IcecreamSandwich.xml
repo sync

Kernel & Driver Sources

To clone kernel source from scratch do:

git clone git://git.omapzoom.org/kernel/omap.git kernel/android-3.0
cd kernel/android-3.0
git checkout 6925ea33846858fb0bcd427912a9508b79c0bac3

If you already have kernel source cloned then just update it:

cd $YOUR_PATH/kernel/android-3.0
git fetch origin
git checkout 6925ea33846858fb0bcd427912a9508b79c0bac3

U-Boot Sources

git clone git://git.omapzoom.org/repo/u-boot.git u-boot
cd u-boot
git checkout 8524c061c9bf47daf683a439e1daf5ba9e599dcd

X-loader Sources

git clone git://git.omapzoom.org/repo/x-loader.git x-loader
cd x-loader
git checkout 2d411162991e4a74f4d88110015428f29b63eeb9

Release Content

This release has the below content - Kernel and Drivers tested with OMAP4 4460 ES1.1 HS Blaze_Tablet @1.5GHz and verified with Ice Cream Sandwich UI - A9 source code for accelerating Video

Build Instructions

Setting up build environment

From your work directory (where your 27.IS.2.M1 folder resides):

export YOUR_PATH=`pwd`
export PATH=$PATH:<toolchain_parent_dir>/arm-2010q1/bin
export MYDROID=${YOUR_PATH}/mydroid
mkdir $MYDROID/logs
export CROSS_COMPILE=arm-none-linux-gnueabi-
export PATH=${YOUR_PATH}/u-boot/tools:${PATH}

Building U-BOOT

cd ${YOUR_PATH}/u-boot
make distclean
make ARCH=arm omap44XXtablet_config #(for Blaze_Tablet)
make ARCH=arm omap4430sdp_config #(for Blaze)
make 2>&1 |tee $MYDROID/logs/u-boot_make.out

Building X-LOADER

cd ${YOUR_PATH}/x-loader
make distclean	
make ARCH=arm omap44XXtablet_config #(for Blaze_Tablet)
make ARCH=arm omap4430sdp_config #(for Blaze)
make ift 2>&1 |tee $MYDROID/logs/x-loader_make.out

### For fastboot.sh flashing script purpouse rename MLO: ####
mv MLO Blaze_Tablet_GP_ES1.1_MLO #(for Blaze_Tablet)
mv MLO Blaze_GP_ES1.1_MLO #(for Blaze)

Signing X-LOADER for HS devices

The tool for signing x-loader is provided on TI's package, (MShield). Please contact TI customer representative to get access to this tool.

cd ${YOUR_PATH}/mshield-dk
cp -f ${YOUR_PATH}/x-loader/x-load.bin .
./generate_MLO OMAP4460 ES1.1 x-load.bin

### For fastboot.sh flashing script purposes rename MLO: ####
cp MLO Blaze_Tablet_HS_ES1.1_MLO  #(For Blaze_Tablet)
mv MLO Blaze_HS_ES1.1_MLO  #(For Blaze)

Building Kernel

Note: If you are building for a GP device it is recommended not to build the SMC kernel driver.
To create kernel uImage you need to add "mkimage" directory path to your "PATH" environment variable:

cd ${YOUR_PATH}/kernel/android-3.0
make ARCH=arm distclean
make ARCH=arm blaze_defconfig
make ARCH=arm uImage 2>&1 |tee $MYDROID/logs/kernel_make.out

Building Kernel modules

cd ${YOUR_PATH}/kernel/android-3.0
make ARCH=arm modules 2>&1 |tee $MYDROID/logs/kernel_modules.out

Building WLAN driver

For both WL127x and WL128x the build procedure is as below.

cd $MYDROID/hardware/ti/wlan/mac80211/compat
export KERNEL_DIR=${YOUR_PATH}/kernel/android-3.0
make ARCH=arm

The above step will produce compat.ko, cfg80211.ko, mac80211.ko, wl12xx.ko, wl12xx_sdio.ko

Note: It is mandatory to perform WiFi calibration while using ICS binaries for WL1271 devices as descried in http://omappedia.org/wiki/Android_Mac80211#WLAN_Calibration_Instruction

Building Android Filesystem (AFS) with TI Codecs enabled

In the make step below use the number of cores you have available; i.e. -j4 (for 4 cores) or -j12 (for 12 cores)

source build/envsetup.sh

Now depending on your platform use either:

lunch blaze_tablet-userdebug  # (for Blaze Tablet)


lunch full_blaze-userdebug  # (for Blaze)
make clean ;#(required for rebuild only)
make -j4 2>&1 |tee $MYDROID/logs/android_make.out

The GFX DDK and Ducati binaries are available within Android within the following repository :


Building AFS with Android Codecs

This release was not verified with Android codecs. Camera based applications need TI proprietary drivers. Please contact TI customer representative to get access to proprietary sources

Preparing Android binaries

The following binaries are required by the Blaze Tablet® board. This step will prepare a directory, called myfs, containing all necessary Android files that you

must include within your SD card.

export BOARD_TYPE="blaze_tablet" #or "blaze" depending on your board type

cd $MYDROID/out/target/product/$BOARD_TYPE
mkdir -p system/lib/modules
cp $MYDROID/hardware/ti/wlan/mac80211/compat/compat/compat.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/net/wireless/cfg80211.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/net/mac80211/mac80211.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/drivers/net/wireless/wl12xx/wl12xx.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/drivers/net/wireless/wl12xx/wl12xx_sdio.ko system/lib/modules/

mkdir myfs
cd myfs
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/root/* .
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/system/ .
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/data/ .

Preparing eMMC images

mkdir omap4_emmc_files_$BOARD_TYPE
cd omap4_emmc_files_$BOARD_TYPE
cp -f $MYDROID/out/host/linux-x86/bin/fastboot .
cp -f $MYDROID/out/host/linux-x86/bin/mkbootimg .
cp -f $MYDROID/out/host/linux-x86/bin/make_ext4fs .
cp -f $MYDROID/out/host/linux-x86/bin/simg2img .

cp -f ${YOUR_PATH}/u-boot/u-boot.bin .
cp -f ${YOUR_PATH}/x-loader/Blaze_Tablet_GP_ES1.1_MLO .  #(or Blaze_GP_ES1.1_MLO)
cp -f ${YOUR_PATH}/kernel/android-3.0/arch/arm/boot/zImage .
cp -f ${YOUR_PATH}/mshield-dk/Blaze_Tablet_HS_ES1.1_MLO . #(or Blaze_HS_ES1.1_MLO)

Creating img files:

find out/target/product/$BOARD_TYPE -name *.img -exec rm -f {} \;  
make -j4
cp -f ${MYDROID}/out/target/product/$BOARD_TYPE/*.img $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE

This build should not take too much time and will re-generate a new *.img files with the modified init.rc file in it (If you built and installed GFX after compiling AFS, system.img and data.img will also be updated with the GFX files).

Now from this new directory we will create the eMMC images which will be flashed using fastboot protocol (described later). First create boot.img image using kernel image we copied previously:

cd $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE

Now create cache partition:

cd $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE
dd if=/dev/zero of=./cache.img bs=1048510 count=128
mkfs.ext4 -F cache.img -L cache

Flashing the OMAP4 Hardware

After the emmc files are available you then can use the fastboot.sh script to upload binaries to your Blaze or Blaze_Tablet
You will need to copy the fastboot.sh script to the location of the eMMC files.
Note: SD Card Boot is not supported in this release.

cd $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE
cp $MYDROID/device/ti/$BOARD_TYPE/boot/fastboot.sh .

sed -i 's/${FASTBOOT-".\/..\/..\/..\/..\/out\/host\/linux-x86\/bin\/fastboot"}/.\/fastboot/g' fastboot.sh
sed -i 's/${PRODUCT_OUT-".\/"}/.\//g' fastboot.sh 

Connect the Blaze or Blaze_Tablet micro USB port to your Linux box and go to where the eMMC files are. Previous partitions created will be deleted and eMMC will be flashed with new u-boot and

MLO. You need to boot the board and start fastboot server on the target (OMAP4 board).

   # fastboot

You should see a message

    Fastboot started

When running the fastboot script the command should be issued as super user when run:


This will detect your board and flash the images to the board.

First time flashing on eMMC

If there is no u-boot on your board's eMMC, you will have to boot using SD card. Copy u-boot.bin and MLO files to an SD card (boot partition) and then boot the target board from this external SD

card using the following SYSBOOT switch settings to boot from external SD card: 01011101

   For Blaze & Blaze_Tablet board: Switch S2-(1:8): OFF ON OFF ON ON ON OFF ON

Note: S8-(6:1) corresponds to SYSBOOT[5:0] in TRM. (ON=0, OFF=1)

Once you boot the board, start fastboot server on the target (OMAP4 board).

   # fastboot

You should see a message

    Fastboot started

Now from the PC execute following commands to flash MLO and u-boot to eMMC

   ./fastboot oem format
   ./fastboot flash xloader ./MLO
   ./fastboot flash bootloader ./u-boot.bin

Now change the following SYSBOOT switch settings to boot out of EMMC: 11111101 whenever the board is restarted.

   For Blaze & Blaze_Tablet board: Switch S2-(1:8): ON ON ON ON ON ON OFF ON

Formatting SD Card

You will need to format your SD for the Linux file system. Connect your SD memory card reader with memory card inserted to a USB port on your Linux Ubuntu PC. You must login as Super User.

$ su
$ fdisk -l

Match the device to the size of your memory card. Look for the /dev/*** device which matches the memory card in the card reader. Use the matching device’s letter prefix in the next command. For example if the device for memory card reader card example was: /dev/sdb1, then use only /dev/sdb in the fdisk command.

Take note of the size in bytes of your SD Card. You will need this to calculate the number of cylinders in a future step.

$ fdisk /dev/sdb  (replace sdb with the letter prefix for your device)

(Delete all partitions on the card if they exist)
Command (m for help): d
Partition number (1-4): 1
Command (m for help): d
Selected partition 2

Command (m for help): x

(Change the number of heads, sectors and cylinders on the device)
Expert command (m for help): h
Number of heads (1-256, default 255): 255
Expert command (m for help): s
Number of sectors (1-63, default 63): 63
Expert command (m for help): c
Number of cylinders (1-1048576, default 248): <You must calculate the number of cylinders for your SD card.  To do this, use the following formula:  

new_cylinders = (Size in bytes from your fdisk –l command)/8225280
Drop any fractional values and enter the whole number in this command.
Use this number all the steps that refer to the number of cylinders>

(Now return to the main menu)
Expert command (m for help): r

(Create the first partition)
Command (m for help): n
Command action
   e   extended
   p   primary partition (1-4)
Partition number (1-4): 1
First cylinder (1-248, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-248, default 248): +64M

If you plan to use this SD card partition for storing media your can use +1024M assuming a 2+ GB SD card.

(Create the second partition)
Command (m for help): n
Command action
   e   extended
   p   primary partition (1-4)
Partition number (1-4): 2
First cylinder (10-248, default 10): 10
Last cylinder or +size or +sizeM or +sizeK (124-248, default 248): <use the cylinder value you calculated earlier>  

(Change the first partition to at FAT32 partition)
Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): c
Changed system type of partition 1 to c (W95 FAT32 (LBA))

(Toggle the bootable flag for partition 1)
Command (m for help): a
Partition number (1-4): 1

(Print the partition table to confirm your settings)
Command (m for help): p

(Sample Output – your output may differ depending on your SD card’s size and brand)
Disk /dev/sdb: 2041 MB, 2041577472 bytes
255 heads, 63 sectors/track, 248 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x00000000

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1   *           1         9        72261     c  W95 FAT32 (LBA)
/dev/sdb2              10       248     1919767+    83  Linux

(Write your changes to the SD Card)	
Command (m for help): w

(You will see the following output)
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x partitions, please see the fdisk manual page for additional information.
Syncing disks.

Format your partitions typing the following commands (logged as root@ubuntu-box):
$ mkfs.vfat -F 32 -n boot /dev/<your device’s first partition’s name – see the print output from the previous step> 
$ mkfs.ext3 -L android_fs /dev/<your device’s second partition’s name – see the print output from the previous step> 

There is a shell script that all calculations above automatically; to get it do:
$ wget http://cgit.openembedded.org/cgit.cgi/openembedded/plain/contrib/angstrom/omap3-mkcard.sh

Add execution permission:
$ chmod +x omap3-mkcard.sh

And you are ready to use it by just typing:
$sudo ./omap3-mkcard.sh <your_device (e.g. /dev/sdb)>


WLAN Calibration

For optimal Wi-Fi performance calibration of Wi-Fi hardware is mandatory, follow the procedure from http://omappedia.org/wiki/Android_Mac80211#WLAN_Calibration_Instruction

WLAN Firmware files

Wi-Fi firmware files are now part of repo.

BTFM Firmware files

The BTFM firmware/scripts are now part of repo and are no longer required from a separate package.

Personal tools